STAT3 sensitizes insulin signaling by negatively regulating glycogen synthase kinase-3 beta.
نویسندگان
چکیده
OBJECTIVE Glucose homeostasis is achieved by triggering regulation of glycogen synthesis genes in response to insulin when mammals feed, but the underlying molecular mechanism remains largely unknown. The aim of our study was to examine the role of the signal transducers and activators of transcription 3 (STAT3) in insulin signaling. RESEARCH DESIGN AND METHODS We generated a strain of mice carrying a targeted disruption of Stat3 gene in the liver (L-Stat3(-/-) mice). Hepatocytes of the L-Stat3(-/-) mice were isolated to establish cell lines for mechanistic studies. Nuclear translocation and DNA-protein interaction of STAT3 was analyzed with immunofluorescent and chromatin immunoprecipitation methods, respectively. Levels of glucose, insulin, leptin, and glucagon were profiled, and putative downstream molecules of STAT3 were examined in the presence of various stimuli in L-Stat3(-/-) and control mice. RESULTS STAT3 was found to sensitize the insulin signaling through suppression of GSK-3beta, a negative regulator of insulin signaling pathway. During feeding, both mRNA and protein levels of GSK-3beta decreased in Stat3(f/+) mice, which reflected the need of hepatocytes for insulin to induce glycogen synthesis. In contrast, the L-Stat3(-/-) mice lost this control and showed a monophasic increase in the GSK-3beta level in response to insulin. Administration of GSK-3beta inhibitors lithium chloride and L803-mts restored glucose homeostasis and rescued the glucose intolerance and impaired insulin response in L-Stat3(-/-) mice. CONCLUSIONS These data indicate that STAT3 sensitizes insulin signaling by negatively regulating GSK-3beta. Inactivation of STAT3 in the liver contributes significantly to the pathogenesis of insulin resistance.
منابع مشابه
تأثیر سه ماه تمرین هوازی بر مسیر پیام رسانی Wnt عضله اسکلتی موشهای صحرایی نر
Background: Atrophy in skeletal muscle plays an important role in disease-related tissue dysfunction such as sarcopenia. The Wnt-signaling pathway has been shown to be critical for skeletal muscle development. Current evidence suggests that exercise trainings may alter hypertrophy-related signaling in skeletal muscle. Therefore, the purpose of this study was investigating the effect of three mo...
متن کاملThe JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3 beta.
We examined the role for the JAK/STAT signaling pathway in acute opioid-induced cardioprotection (OIC) and whether opioid-induced glycogen synthase kinase-3beta (GSK-3 beta) inhibition is mediated by the JAK/STAT pathway. Rats underwent 30 min of ischemia and either 5 min or 2 h of reperfusion, followed by tissue isolation for molecular analysis or infarct size assessment, respectively. Rats we...
متن کاملMuscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity.
Rictor is an essential component of mTOR (mammalian target of rapamycin) complex 2 (mTORC2), a kinase complex that phosphorylates Akt at Ser473 upon activation of phosphatidylinositol 3-kinase (PI-3 kinase). Since little is known about the role of either rictor or mTORC2 in PI-3 kinase-mediated physiological processes in adult animals, we generated muscle-specific rictor knockout mice. Muscle f...
متن کاملTemporal alterations in protein signaling cascades during recovery from muscle atrophy.
Currently, the repertoire of cellular and molecular pathways that control skeletal muscle atrophy and hypertrophy are not well defined. It is possible that intracellular regulatory signaling pathways are active at different times during the muscle hypertrophy process. The hypothesis of the given experiments was that cellular signals related to protein translation would be active at early time p...
متن کاملAcute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin-resistant rat skeletal muscle.
Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 57 5 شماره
صفحات -
تاریخ انتشار 2008